...read the wave
Nano Medicine...Nano Medizin...
Nano Geneeskunde...Nano Medicína
www.nanoTsunami.com

 

Inner Structure of Cells Behaves Much as Molten Glass

Finding may impact understanding of mechanical facets of many diseases

 

Monday, June 20, 2005

Boston, MA - An international team led by Jeffrey J. Fredberg, professor of bioengineering and physiology at the Harvard School of Public Health, has found that the cell modulates its mechanical properties in much the same way as a glassblower shapes fine glassware. This new view of cellular functions sheds light on mechanical facets of phenomena as diverse as asthma, cancer, inflammation, and vascular disease. These findings appear in advance online from the July, 2005 issue of Nature Materials ( http://www.nature.com/nmat/index.html ).


To fashion a work of glass, a glassblower must heat the object, shape it, and then cool it down. Fredberg and his colleagues have shown that the cell modulates its mechanical properties and changes its malleability in much the same way. But instead of changing temperature, the cell changes a temperature-like property that has much the same effect.

Using an array of novel nanotechnologies developed by the researchers at HSPH, Fredberg et al. discovered the basic physical laws that describe cell mechanical behavior.  Previously, the classical model of cell mechanical behavior had pictured the cell as a viscous fluid core contained by an elastic cortical membrane, but their findings did not at all conform to that picture. The team's experiments show that the cell is a strange intermediate form of matter that is neither solid nor fluid, but retains features of both. Moreover, as the cell goes about its routine business of stretching, spreading, and contracting, it can vary that temperature-like property and control where it sits along the spectrum between solid-like and fluid-like states.

"These findings have important lessons for understanding the dynamics of structural proteins at a scale that is intermediate between the single molecule and integrative cellular function. This is a collective phenomenon of many molecules interacting in concert, and would disappear altogether in the study of one molecule interacting with another in isolation," said Fredberg. He continued, "The laws governing cell behavior bring together into one physical picture cell elasticity, viscosity, and remodeling, and give us a different way to think about the molecular basis of airway narrowing in asthma, vessel narrowing in vascular disease, wound repair, embryonic development, and cell invasion in cancer, all of which have important mechanical components. Perhaps most surprising of all, in addition to offering a different way to think about mechanisms of disease, these findings shed light upon the behavior of familiar inert condensed substances that remain poorly understood, including pastes, foams, emulsions, and granular materials."

The research was supported by grants from the National Institutes of Health.

Contact:
Christina Roache (617) 432-6052
677 Huntington Avenue
Boston, MA 02115

Harvard School of Public Health is dedicated to advancing the public's health through learning, discovery, and communication. More than 300 faculty members are engaged in teaching and training the 900-plus student body in a broad spectrum of disciplines crucial to the health and well being of individuals and populations around the world. Programs and projects range from the molecular biology of AIDS vaccines to the epidemiology of cancer; from risk analysis to violence prevention; from maternal and children's health to quality of care measurement; from health care management to international health and human rights.

This story has been adapted from a news release -
Diese Meldung basiert auf einer Pressemitteilung -
Deze tekst is gebaseerd op een nieuwsbericht -


who is reading
the wave ?

missed some news ?
click on archive photo

 

or how about joining us

 

or contacting us ?

 


about us

 

our mission